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From Biohints to Confirmed Evidence of Life: 
Possible Metabolisms Within Extraterrestrial 
Environmental Substrates 

Uh, Houston, we need data!
3 million synthetic planetary spectra were generated 
using PSG (Planetary Spectrum Generator3, courtesy of 
Geronimo Villanueva at NASA Goddard) and compute 
resources supplied by Google Cloud. 

High resolution spectra were generated over a range of 
stellar and planetary parameters (28 total) to maximize 
the diversity of the produced dataset for machine 
learning and release to the scientific community. 

Proof of Concept: 
Synthetic Spectra Input

INARA: Intelligent exoplaNet Atmospheric RetrievAlWe use sophisticated telescopes that 
record information about a planet’s 
temperature, tilt, rotation, and atmosphere, 
along with other stellar and planetary 
parameters. From these parameters we are 
able to look for biohints1,2.

We want to know what molecules are in the atmosphere of an exoplanet.
Knowing this can help us determine whether or not life may exist on an exoplanet. This 

is because certain combinations of molecules are indicative of life1,2.

What we are able to observe is complicated.
Telescopes record emissions from molecules in a planet’s atmosphere at different wavelengths. 
This results in a complicated planetary spectrum, which we then have to deconvolve into potential 
atmospheric molecular components. This process (called an atmospheric retrieval) is very 
time-consuming and computationally expensive!

Can we use machine learning to expedite the speed and accuracy of determining 
the   composition of exoplanetary atmospheres?

Biohints may be molecules, 
patterns or other signals that 
are known to be indicators of 
biological activity 
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How do we determine if life exists on exoplanets?

Set Current    Future

Training 100,000 2.5 
million

Validation 10,000 400,000

Test 7,710 200,000

Comparison
Method Time Molecules retrieved
Traditional Hours to days User-specified

ExoGAN4 Minutes H2O, CO, CO2, CH4

HELA5 Seconds H2O, HCN, C2H2

INARA Seconds H2O, CO, CO2, CH4, C2H6, O2, O3, N2, N2O, NO2, NH3, SO2

Error H2O CO2 O2 N2 CH4

MSE 3.43e-4 1.02e-2 7.00e-3 2.05e-2 1.93e-4

± 2σ 2.28e-3 3.53e-2 2.59e-2 5.21e-2 1.07e-3

Machine Learning Models
We explored many model architectures ranging 
in complexity from linear regression and 
feed-forward neural networks to convolutional 
neural networks (CNNs). We present results 
from the best performing model, a 1D CNN 
with the following configuration: Conv1d(64) - 
tanh - MaxPool - Conv1d(64) - relu - MaxPool - 
Conv1d(128) - relu - MaxPool - Conv1d(256) - 
relu - FC(256) - relu - FC(12) - T. Loss(0.42) - V. 
Loss (0.49) - 64 epochs.

Loss plot for the chosen CNN

True vs CNN predicted values 

~2000 VMs in Google Cloud running INARA/PSG 

Posterior distributions of the relative molecular abundances for one planet (600 predictions for each molecule). 
Within each scatter plot, each plot is a single regression in the CNN. The straight lines indicate the median values 
and the star indicates the true value (right: high level overview - left: zoomed in scale)
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